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Improving diffusion-based protein backbone 
generation with global-geometry-aware 
latent encoding
 

Yuyang Zhang1,2,8, Yuhang Liu    3,4,8, Zinnia Ma    5,8, Min Li6,7, Chunfu Xu    3,4  & 
Haipeng Gong    1,2 

The global structural properties of a protein, such as shape, fold and 
topology, strongly affect its function. Although recent breakthroughs in 
diffusion-based generative models have greatly advanced de novo protein 
design, particularly in generating diverse and realistic structures, it remains 
challenging to design proteins of specific geometries without residue-level 
control over the topological details. A more practical, top-down approach 
is needed for prescribing the overall geometric arrangements of secondary 
structure elements in the generated protein structures. In response, we 
propose TopoDiff, an unsupervised framework that learns and exploits a 
global-geometry-aware latent representation, enabling both unconditional 
and controllable diffusion-based protein generation. Trained on the Protein 
Data Bank and CATH datasets, the structure encoder embeds protein 
global geometries into a 32-dimensional latent space, from which latent 
codes sampled by the latent sampler serve as informative conditions for 
the diffusion-based backbone decoder. In benchmarks against existing 
baselines, TopoDiff demonstrates comparable performance on established 
metrics including designability, diversity and novelty, as well as markedly 
improves coverage over the fold types of natural proteins in the CATH 
dataset. Moreover, latent conditioning enables versatile manipulations 
at the global-geometry level to control the generated protein structures, 
through which we derived a number of novel folds of mainly beta proteins 
with comprehensive experimental validation.

De novo protein design is an intriguing and expanding field of research 
with the potential to venture into uncharted fold space, offering limit-
less opportunities for tailoring proteins to novel applications, including 
biomedical therapeutics1–3, catalytic enhancement4 and the devel-
opment of innovative biological circuits5,6. Despite its vast potential, 
de novo protein design has long been recognized as a challenging task, 
due to the highly structured nature of protein data and the stringent 
requirements on geometric restraints7.

Recent advances in diffusion models have substantially reshaped 
the field with their superior ability to generate novel, diverse and 

physically plausible structures. Although early efforts still relied on 
one-dimensional or two-dimensional (2D) protein representations8–10, 
subsequent works tended to leverage the success in protein structure 
prediction tasks11,12, building equivariant networks to directly learn 
physical priors in the Cartesian space13–17.

Despite encouraging progress, several issues remain to be 
addressed. Although lacking systematic evaluation, there is evidence 
that some models, although trained on unbiased datasets such as the 
Protein Data Bank (PDB)18 or CATH19,20, struggle to generate protein 
backbones of certain fold classes16. This issue is evident when reviewing 
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underlying data distribution in an arbitrary dataset without the explicit 
requirement of annotations or prior understanding? We propose the 
framework of TopoDiff as a solution. First, we concurrently trained the 
diffusion-based structure generative model with a structure encoder 
of the encoder–decoder architecture. The encoder learns a fixed-size, 
continuous latent space that captures the high-level global geometry 
of proteins, whereas the generative module operates at the residue 
level for controllable sampling conditioned on the predefined latent 
encoding. Next, we trained a simple latent diffusion model to unbias-
edly sample protein global geometries from this learned latent distri-
bution and used the sampled latent to guide subsequent atomic-level 
protein structure sampling. This scheme not only effectively enhances 
the coverage of protein fold types in the dataset but also opens up 
a dimension for controllable generation. We then defined a cover-
age metric and conducted systematic evaluations on TopoDiff and 
other state-of-the-art models using this and other established metrics. 
Finally, we performed biological experiments to demonstrate the 
effectiveness of our method in improving the sampling of proteins 
of mainly beta topologies, a large class that is prevalent in nature but 
remains under-represented in prior de novo protein design efforts.

Results
Overview of TopoDiff
The overall framework of TopoDiff is illustrated in Fig. 1. The global 
structural properties of a protein, such as shape, fold and topology, 

all experimentally validated proteins generated by structure-based 
diffusion models so far, since they predominantly fall in the mainly 
alpha or alpha-and-beta classes. Furthermore, we note that the cur-
rent widely used metrics, namely, designability, novelty and diver-
sity, provide no indications of the extent to which the natural protein 
space has been covered. This gap further hinders the understanding 
and resolution of these issues. To improve the coverage of the gener-
ated samples over specific protein folds, previous works have used 
residue-level one-dimensional or 2D fold conditioning along with addi-
tional fine tuning to generate immunoglobulin domains with varied  
loop regions21, or applied classifier guidance by training classifiers 
on specific protein classes22. Although these approaches are indeed 
capable of enhancing coverage for a particular group of proteins, their 
feasibility strictly depends on the clear and distinctive definition of 
this group as well as the presence of sufficient group-labelled training 
samples, which are the prerequisites for applying the finer-grained 
topology as conditioning, training a robust classifier to guide the gradi-
ent or model fine-tuning on specific data subsets for additional refine-
ment. However, due to the limited and unbalanced amount of available 
annotations as well as the discreteness and subjectivity in annotation 
assignment23,24, it is often impractical to apply the same strategy to 
achieve unbiased visiting of fold modes in the training set and effective 
expansion of the existing protein fold space simultaneously.

In this work, we focus on an important and general unsupervised 
problem setting: how to train the diffusion model to capture the 
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Fig. 1 | Overview of the work. a, Overall framework of TopoDiff. The training (left) 
and sampling (right) processes consist of two stages. In stage 1 of the training 
process, each protein structure is converted by the encoder module into a 
fixed-size, low-dimensional latent code z that captures the global geometry, 
whereas the perturbed structure ℛt  is sampled following the designed forward 
marginal distribution. The diffusion decoder is trained to predict the ground-
truth structure ℛ0 from ℛt  and z. In stage 2, the training focuses on learning the 
diffusion process in the latent representation space. During inference, a latent 
code is first sampled from the latent diffusion module, and then the structure 
decoder is used to generate structures conditioned on the sampled latent.  
b, Through unbiased sampling in the compact, continuous latent space, TopoDiff 

learns to generate samples with enhanced coverage of the natural fold space (top 
row). Otherwise, TopoDiff could be targeted to produce structures with the 
desired properties by reweighted latent sampling under the assistance of 
latent-based property predictors (bottom row). The example here shows a 
particular application for generating novel, designable mainly beta proteins.  
c, TopoDiff is capable of generating structures from a local distribution in the 
latent space. The two example applications are the simulation of a gradual 
transition between two structures through latent-based linear interpolation  
(top row) and the creation of structures with similar global geometry to a given 
reference through latent perturbation (bottom row).
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are closely related to its function25,26 and dynamics27,28, as well as lay the 
foundation for achieving a heuristic understanding of its molecular 
mechanisms. Conversely, although powerful, classic diffusion models 
constrain dimensionality to be proportional to the input, frustrating 
efforts to learn meaningful, compressed latent representations of 
global protein geometry29. With this in mind, the core focus of our 
framework is on the establishment, investigation and utilization of 
a fixed-size, low-dimensional latent representation that encodes the 
global structural characteristics of all proteins, building on recent 
advances in diffusion-based models. To achieve this aim, both train-
ing and sampling processes are divided into two stages. In stage 1 of 
the training process (Fig. 1a, left), we adopt a diffusion–variational 
autoencoder (VAE) formulation to harness the superior generative 
capability of diffusion models alongside the representational power 
of VAEs with a compressed and continuous latent space, thereby com-
bining the inherent strengths of both architectures in a unified train-
ing process. As essential components of our framework, the resulting 
structure encoder and conditional diffusion decoder share a common 
fixed-dimensional latent space, which provides the protein-level encod-
ing z for the global geometry. In stage 2, a latent diffusion module is 
trained to model the latent distribution, enabling unbiased sampling 
from this otherwise intractable space. During the sampling phase 
(Fig. 1a, right), the latent diffusion model first samples from the latent 
space, and a structure diffusion process is then performed for protein 
structure generation in the Cartesian space by conditioning on the 
sampled latent. The architecture design of TopoDiff enables multiple 
brand-new controllable sampling schemes (Fig. 1b,c).

Learned latent representation of the fold space
To gain an understanding of the latent space learned by TopoDiff, we 
first encoded all the structures in our CATH-60 training dataset into  
the 32-dimensional latent space and then applied t-distributed  
stochastic neighbour embedding (t-SNE)30 for dimensionality reduc-
tion. As shown in Fig. 2b, these codes collectively form a compact and 

continuous manifold. In particular, even though no structure annota-
tions were used during training, the resulting clusters perfectly coincide 
with the human curation of CATH class annotations, with each class 
clearly separable from the others even in 2D embedding. Moreover, 
we find that each CATH architecture cluster indeed exhibits a distinct 
spatial distribution (Fig. 2c and Supplementary Fig. 4). Many other 
intrinsic attributes of proteins, such as the secondary structure com-
position, chain length and radius of gyration, also display structured 
global or local distribution patterns within the manifold (Supplemen-
tary Fig. 3). These observations demonstrate that the model learns 
to partition over the training dataset in an unsupervised and highly 
interpretable manner.

Next, we tested the generalizability of this encoding method on 
unseen data. Specifically, we applied the same encoder trained on 
CATH to two other hierarchical structural classification datasets, 
namely, SCOPe31,32 and ECOD33 (Fig. 2a), which present evident distinc-
tions in structural coverage and domain boundary definitions34–36  
due to their discrepant classification schemes35,37. Interestingly, the 
latent manifolds produced by the encoder align closely with the 
annotations of top-level hierarchies in both SCOPe and ECOD datasets 
(Fig. 2b and Supplementary Figs. 5 and 6). Consistent with previous 
analyses34–36, the distinctive hierarchical organizations across differ-
ent classification systems may essentially reflect different domain 
partitioning and class discretization within a common structure 
space. By learning a continuous and unsupervised representation, 
our method effectively bypasses these annotation inconsistencies 
across datasets.

The continuous, global-level latent space also offers an alterna-
tive view of the protein fold space compared with the established 
hierarchical, discrete organizations. In Supplementary Results 2,  
we provide a more thorough discussion of its potential advantages, 
focusing on revealing the continuous relationships between fold 
classes and identifying potentially inconsistent or ambiguous 
annotations.
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Fig. 2 | Analysis of TopoDiff ’s learned latent representations. a, Once trained, 
the fixed structure encoder maps the structures from different sources into a 
unified global representation space. b, Visualization of the latent space coloured 
by top-level classification hierarchies: CATH (class), SCOPe (class) and ECOD 

(architecture). Each point represents a structure, coloured according to its 
annotation. c, Kernel density estimation of specific CATH architectures within 
the latent space. Each subplot shows the density of structures within a particular 
architecture, illustrating its distribution across the latent space.
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Benchmark testing on unconditional sampling
We evaluate the performance of TopoDiff in unconditional sampling 
against several state-of-the-art diffusion-based generative models, 
including Genie16, FrameDiff15, Chroma22 and RFDiffusion17. To ensure 
a comprehensive and robust evaluation across a wide range of protein 
sizes, for each model under evaluation, we randomly generated 500 
samples at each fixed length in {50, 75, 100, 125, 150, 175, 200, 225, 
250}, a series uniformly spanning the length range of our training 
data. On the basis of our experience, such a scheme can reveal the 
length-dependent behaviour in a model, which might be otherwise 
overlooked.

We notice that established metrics are dedicated to quantify 
either per-sample quality (for example, designability and novelty) 
or intrasample diversity (for example, diversity), but provide no 

information of how much the known fold space is covered by the gen-
erated samples, an indicator that quantitatively describes a model’s 
capacity for unbiased sampling across existing data. Evidence from 
other fields shows that ignoring this metric will introduce selection bias 
towards models that sacrifice variation in favour of high-quality sam-
ples from a truncated subset of the sampling space38. Indeed, over the 
past decade, de novo protein design has been largely confined to alpha 
helix bundles and alpha–beta sandwiches39,40, and diffusion-based 
models have not provided an immediate remedy to this biased trend, 
as experimental validations and applications still predominantly focus 
on these architectures17,22,41. To address this limitation, we adopted a 
coverage metric42 to quantify the proportion of natural protein folds 
covered by samples produced from a generative model (Fig. 3a; Meth-
ods provides the definition and detailed implementation).
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Fig. 3 | Evaluation of TopoDiff ’s generative performance for unconditional 
sampling. a, Illustration of the coverage metric used to quantify the extent to 
which the generated samples cover the natural protein fold space. Real samples 
Xi are compared with generated samples Yj using a KNN approach to determine if 
each real sample is covered by the generated samples within a defined distance 
threshold. The coverage score is calculated as the proportion of real samples 
that have at least one generated neighbour within this threshold. b, Quantitative 
analysis of the generative performance across different models, measured by 
diversity, coverage, designability and novelty at varying protein lengths. The 
arrows besides the metrics indicate the desired direction of improvement. 
For novelty and designability metrics, box plots are used to depict the data 
distribution (n = 500 samples per length), showing median and quartiles, 
with whiskers extending to 1.5 times the interquartile range. c, Radar plots 

summarizing the average performance of each model on different metrics  
when considering all the generated samples (left) and only high-quality samples 
(right; scRMSD ≤ 2 Å). Each metric is averaged across all the sampled lengths.  
d, Projection of the sampled latent codes on the t-SNE dimension-reduced space 
of the CATH dataset. A total of 12,613 latent codes, corresponding to sampled 
structures with scRMSD ≤ 2 Å and maxTM < 0.7, are projected onto the original 
t-SNE space constructed from the CATH dataset (Fig. 2). Each coloured point 
represents a sampled latent code, with the colour indicating the sampled length 
(~50–250, from purple to green). The representative structures generated 
from the latent codes at different regions of the latent space are also visualized 
alongside the scatter plot, providing a visual inspection of the latent structure 
relationship.
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The first row in Fig. 3b presents an evaluation of diversity and 
coverage. TopoDiff is comparable with the other methods with regard 
to diversity, but prevails over all of them with regard to coverage. RFDif-
fusion shows notable deficiencies in both metrics for short proteins in 
the length of [50, 150], a range covering over 60% of natural domains 
in the CATH database. Similarly, FrameDiff also exhibits some degree 
of length-dependent fluctuations. Genie excels at generating highly 
diverse samples, but with a slightly lower coverage. To further inves-
tigate the specific advantage of TopoDiff over the others in covering 
natural fold types, we analysed the sample-wise binary coverage indi-
cators and found that our model could cover a substantially larger 
number of mainly beta-strand fold classes, a group of topologies that 
other methods typically under-represent (Supplementary Fig. 13).

The second row in Fig. 3b shifts to the evaluation of designabil-
ity and novelty. Regarding designability (in terms of self-consistent  
root mean square distance (scRMSD) as defined in the Methods),  
TopoDiff demonstrates advantages over most models excluding  
RFDiffusion (which has a significantly larger parameter size (Supple-
mentary Table 9)), across the entire sampled length range. For novelty 
(in terms of maxTM as defined in the Methods), TopoDiff shows a 
steady intermediate value along the chain lengths, indicating a fair 
balance between the coverage of known folds and the generalizability 
to novel ones.

We further compare the model performance by averaging metrics  
across all the sampled lengths (Fig. 3c), where the metrics are cal-
culated using all the samples (left) and using samples with high des-
ignability (that is, scRMSD ≤ 2 Å) only (right). TopoDiff undoubtedly 
improves the overall coverage in both cases, indicating that this 
improvement truly arises from designable samples. As mentioned in 
the Methods, the computation of coverage relies on the definition of 
distance between a pair of structures (equation (5)). To supplement 
the evaluation in Fig. 3b,c in which the average TM-score43 between the 
query and target structures is uniformly used for the distance defini-
tion (equation (6)), we also present results with distances computed by 
a third-party model44 (equation (7)) in Supplementary Fig. 12. Clearly, 
the overall relative trend among the tested methods is preserved and 
the advantage of TopoDiff is consistent, indicating the robustness of 
our coverage computation on the choice of distance definition. Over-
all, despite a slight inferiority to RFDiffusion, particularly at longer 
lengths, the designability of TopoDiff surpasses the other methods. 
Furthermore, TopoDiff generates samples at least three times faster 
than RFDiffusion (Supplementary Table 9), which enables the produc-
tion of more diverse and designable backbones within the same time. 
In addition, we also evaluated TopoDiff against several recently pro-
posed methods, including FoldFlow45, Genie2 (ref. 46) and FoldFlow2 
(ref. 47). Detailed results and thorough discussions are provided in 
Supplementary Results 4.

Finally, we seek to further explore the sampling space of TopoDiff. 
From the 22,500 latent structure pairs generated in this benchmark, 
we selected 12,613 with high designability and novelty (scRMSD ≤ 2 Å 
and maxTM < 0.7), and projected these latents onto the CATH-encoded 
t-SNE subspace (Fig. 3d). To investigate the relationship between the 
latent codes and generated structures, we subsampled the latent 
codes spanning the manifold and displayed their corresponding struc-
tures around the scatter plot. As expected, these codes spread over 
the t-SNE-reduced manifold, providing a strong foundation for the 
enhanced coverage of natural fold space by the sampled structures. A 
closer examination of the sampled structures reveals that the spatial 
arrangement of secondary structure elements (SSEs) is highly corre-
lated with the position of the conditioning latent code, closely reflect-
ing the original distribution of CATH training samples (Fig. 2b,c). This 
observation demonstrates that concurrent training not only prompts 
the encoder to capture global geometric information in the latent codes 
but also allows the diffusion decoder to leverage this information to 
generate structures with matching spatial features.

Controllable generation with the learned latent space
In Fig. 4a, we illustrate how different modules developed in this work 
can be integrated to enhance the controllability of structure sampling. 
The latent code could be sampled from the latent sampler shown in the 
previous section or alternatively harvested directly from the encoder’s 
posterior based on a specific input structure. Moreover, additional 
latent classifiers can be trained to predict properties of interest and 
used to tune the sampled latent distribution through classifier guidance 
or rejection sampling. Once a latent is selected, structure sampling can 
be conditioned on this code and optionally on additional residue-level 
information, achieving simultaneous constraining over the global 
geometry and localized atomic details.

Indeed, many measurable properties of the generated samples, 
like the proportion of SSEs, novelty and designability, exhibit dis-
tinct spatial patterns in the latent space, reflecting their inherent 
correlation with the global protein geometry. Hence, we explored 
the possibility of tuning the model performance by reweighting the 
latent sampling regions using pretrained classifiers that predict the 
desired properties. In particular, this strategy effectively enables the 
fine tuning of the model performance by simple manipulation at the 
low-dimensional latent level, which, unlike exhaustive sampling at the 
atomic level in Cartesian space, consumes negligible additional time. 
We focused on the trade-off between designability and novelty via 
rejection sampling (Methods provides the implementation details) 
and created three model variants: a designability-prior variant (using 
a designability classifier), a novelty-prior variant (using a novelty clas-
sifier) and an all-round variant (using both classifiers). As expected, the 
designability-prior variant improves the designability at the expense 
of novelty, whereas the novelty-prior variant shows the opposite trend 
(Fig. 4b and Supplementary Fig. 17). Interestingly, the all-round variant 
achieves balanced improvement over the base model, with novelty and 
diversity significantly increased whereas designability and coverage 
sustained.

In addition to general unconditional sampling in the latent space, 
latent codes could also be sampled from any local region of interest. 
We first demonstrate structure generation around a query structure, 
based on latent sampling from a local distribution around its latent 
encoding. We selected representative query proteins with a wide vari-
ety of architectures from the training dataset and randomly sampled 
five structures without further cherry-picking for each of them. On the 
basis of a side-by-side comparison (Fig. 4c and Supplementary Fig. 18), 
the generated structures, in general, share a very similar SSE spatial 
arrangement to the query one with occasionally improved proportions 
of regular secondary structures, but always present a considerable level 
of diversity in the exact connectivity and topology.

Subsequently, we present controlled structure generation based 
on interpolation between pairs of query latent codes. In this experi-
ment, we collected a variety of latent pairs distantly located on the 
latent manifold and linearly interpolated ten sequential intermediate 
latent codes between each pair. Figure 4d shows the variations of 
generated structures along different latent trajectories, with each 
row representing a distinctive latent pair. The second row presents 
the gradual transition from a mainly beta roll to an all-alpha helix bun-
dle, where adjacent structures share a certain degree of similarity 
(TM-score > 0.45), indicating an overall smooth transition process, 
although the two terminal structures have completely different SSE 
spatial arrangements (TM-score = 0.27). Similarly, the first row illus-
trates the interpolation from a structure of orthogonal helices to a 
beta sandwich. More examples are provided in Supplementary Fig. 19.

Moreover, since the latent encoding provides a coarse control 
over the global geometry, it is possible to incorporate additional 
residue-level conditions to impose control at a finer level of granular-
ity. We demonstrate this capacity with a motif scaffolding experiment. 
Specifically, we selected three representative motifs from the RFDif-
fusion study17, including a single helix, a beta hairpin, and a mixed pair 
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of helix and strand. In this experiment, we first unconditionally sam-
pled a series of latent codes that fit into the designed length, and then 
applied these codes and the specified motifs as the joint conditioning 
to generate the structures. Figure 4e presents the density plots of all 
the successful designs (that is, scRMSD ≤ 2 Å and motif scRMSD ≤ 1 Å) 
on the latent manifold, alongside representative sampled structures 
from different regions. In each case, the successful designs exhibit a 
non-uniform distribution across the latent manifold, achieving high 
populations in regions in which the latent information and the motif 

are coherent. When structures inferred by the semantic latent conflict 
with the motif itself, the model seeks to find a compromised solution, 
although with increased difficulty. Taking the two-strand 4ZYP motif 
(Fig. 4e, middle) as an example, even in the mainly alpha region of the 
manifold, we occasionally sampled successful designs in which the beta 
hairpin is encompassed by helices achieving various global shapes. 
Hence, when combined with local constraints, the latent code acts as 
a global prompt to guide the model in exploring various architectures 
and topologies rather than always sampling from the preferred regions.
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cherry-picking. d, Visualization of structures generated by linear interpolation 
between two latent codes in the latent space. Each row depicts a different 
interpolation process, with the projected latent trajectory on the latent space 
(left), a TM-score distance matrix showing pairwise similarity between the 
sampled structures (middle) and a visualization of these sampled structures 
(right). e, Motif scaffolding experiment. For each motif case, latent codes 
corresponding to successful designs are plotted on the central scatter plot, with 
each point coloured based on the kernel density estimation of successful designs 
in the local vicinity. Representative structures sampled from different regions of 
the latent space are shown around the scatter plot, with the query residue-level 
motifs highlighted in yellow and the rest are coloured blue.
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Fig. 5 | Experimental validation of novel mainly beta protein designs.  
a, Experimental characterizations of the selected candidates (B10, B07, B08 and 
B21). The first row displays the design models with their corresponding metrics: 
PDB-TM (maximal TM-score to PDB), AF-RMSD (scRMSD compared with the best 
model of AlphaFold2) and AF-pLDDT (pLDDT of the best model of AlphaFold2). 
The second row shows the SEC profiles (with expected monomeric peaks 
indicated by arrows) and the monomer band observed on the sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis gel. The third row presents the CD 

spectra of the purified proteins at 25 °C (black) and 95 °C (red), demonstrating 
secondary structure content and thermostability. The fourth row displays the 
temperature dependence of the CD signal at 215 nm. No unfolding transition 
is observed at temperatures up to 95 °C for B10 and B07, suggesting their high 
thermostability. MRE, mean residue ellipticity. b, X-ray crystal structure (grey) 
of design B10 matches closely with the backbone structure (coloured) generated 
by TopoDiff (RMSD, 1.31 Å). c, Topological diagrams of design B10 in the side and 
top views.
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Experimental validation of generated mainly beta proteins
We seek to test our TopoDiff model in the real-world design scenar-
ios, focusing on the discovery of novel mainly beta proteins, a large 
class of proteins that are commonly found in nature but remain 
under-represented in de novo designed proteins (Extended Data Fig. 1 
shows the statistical analysis on the Protein Design Archive database48 
and Supplementary Results 6 provides a thorough discussion on the  
scientific significance of this task). Following step-wise filtering 
described in the Methods, we finally obtained 403 backbones with 
950 sequence designs, from which we further selected three designs  
per sampled length, resulting in 21 candidates for subsequent experi-
mental validation. As shown in Supplementary Fig. 20, these designs 
are highly diverse in beta-strand arrangements and exhibit notable 
novelty compared with known structures. All the designs feature  
>50% of residues in beta strands and <20% in alpha helices, with more 
than half of the designs consisting exclusively of beta strands and coils. 
Moreover, the global packing of these designs predominantly relies  
on the formation of beta sheets with numerous non-local interactions, 
making manual blueprint design exceptionally challenging. Regarding 
designability, all the designs are predicted to be sufficiently foldable, 
as assessed by ESMFold and AlphaFold2. In particular, 16 out of the  
21 designs have five AlphaFold2 models achieving predicted local  
distance difference test (pLDDT) > 85% and scRMSD < 1.75 Å, which  
are considerably strong indicators of successful design49.

Following in silico selection, we obtained synthetic genes encoding 
the 21 selected designs for subsequent wet-laboratory experimen-
tal validation. Nine of these designs present a soluble expression in 
Escherichia coli (Supplementary Fig. 21), allowing for efficient follow-up 
purification by nickel-affinity chromatography and size exclusion 
chromatography (SEC; Supplementary Fig. 22a). The SEC profiles  
of designs B07 and B10 exhibit distinct monomer peaks, whereas  
the others form a mixture of soluble aggregates and monomers (Fig. 5a 
and Supplementary Fig. 22b). Six of the nine expressed designs display 
the anticipated circular dichroism (CD) spectra for beta-sheet-rich 
proteins (Fig. 5a and Supplementary Fig. 22c). A summary of these 
experimental results is provided in Supplementary Table 11.

Here we highlight four designs that attain separable monomeric 
states and the correct CD spectra (Fig. 5a). Specifically, B07 and B10 
demonstrate high thermostability up to 95 °C, whereas B08 and B21 
also exhibit sufficient resistance to heat denaturation, with melting 
temperatures of approximately 80 °C and 65 °C, respectively. Moreo-
ver, all of them have the PDB-TM values (that is, the maximum TM-score 
to PDB structures) lower than or close to 0.5, supporting their novelty 
in topology. We further determined the structure of B10 with X-ray 
crystallography (Supplementary Fig. 23 and Supplementary Table 12). 
The solved structure closely matches the original backbone generated 
by TopoDiff (Fig. 5b), with a Cα-root mean square distance (RMSD) of 
1.31 Å. This 125-residue mainly beta protein is composed of eight beta 
strands and one alpha helix. One novel structural feature is the packing 
of the alpha helix into the crossover region between two beta sheets 
(Fig. 5b), where the helix extends outwards and pushes the adjacent 
beta strands of the two sheets apart, creating a unique triangular geo-
metric arrangement in the top view (Fig. 5c). Interestingly, this compact 
triangular arrangement is unseen in natural proteins, with the closest 
structures in PDB being either beta barrels or two-layer sandwiches 
(Supplementary Fig. 20). Structural analysis of the other monomeric 
designs is provided in Supplementary Results 7.6.

Discussion
In this work, we propose an unsupervised framework that builds on 
the current state-of-the-art diffusion generative model, enabling 
the concurrent learning of an encoder to capture a low-dimensional 
global structural representation and a conditional diffusion module 
to leverage this information for controllable generation. Noticeably, 
different from methods50,51 that engage length-dependent latent 

diffusion to facilitate protein structure generation, the latent rep-
resentation in TopoDiff is set as fixed dimensional (analogous to a 
branch of computer vision models52–54), which enables the sampling 
and manipulation of various protein global geometries in a universal 
latent space. Hence, the introduction of this fixed-size latent encoding 
into the formulation of diffusion-based protein structure generation 
not only facilitates human interpretation/understanding of the data 
distribution and generation process but also improves the coverage 
of the protein fold space and keeps the other performance metrics 
competitive. Moreover, through the VAE architecture, the latent space 
is confined to a low dimensionality with strong continuity, enforcing 
a coarse constraint over the global geometry without hindering the 
discovery of novel folds during the generation process. The effective-
ness of our unique model design has been validated through ablation 
studies (Supplementary Results 8). On the basis of this design, we 
also propose a number of brand-new, versatile control schemes for 
protein structure generation through simple latent-level manipula-
tion. The latent-level control provides a useful supplement to estab-
lished residue-level conditions like the residue-wise SSE and pairwise 
adjacency13,17, which, although valuable, require substantial domain 
expertise and supposedly limit the sampling space. Eventually, when 
applied to a widely recognized challenging design task, the design of 
mainly beta proteins with novel backbone topologies, our approach 
allows the diffusion-based generation of mainly beta or even full-beta 
novel proteins that have been validated by firm experimental evidence, 
without relying on any human predesign.

Considering the broad application of small, single-domain pro-
teins in nowadays practical protein design and engineering4,55–60, the 
current version of TopoDiff focuses on the structure generation of 
proteins with a length of ≤256 residues. However, due to its unsuper-
vised nature, the whole framework is inherently generalizable to longer 
proteins, potentially by enlarging the parameter capacity in networks. 
In Supplementary Results 9, we show some preliminary explorations 
on the incorporation of the flow-matching technique into the diffu-
sion formula, as well as the scalability of this model on parameter size. 
Alternatively, our framework can be customized for the user-defined 
categories of proteins, allowing for the learning of class-specific rep-
resentations alongside a specialized generative model. On the other 
hand, unlike mainstream design methods and our method, which 
generate backbone coordinates and protein sequence in a step-wise 
manner, all-atom protein generation has been proposed to further 
improve the sequence-structure consistency for the protein under 
design61,62. Although immature, these prior works indicate the possible 
direction of future improvement for our method.

Methods
Overall model design
In alignment with previous studies13–17, we represent the protein as a 
list of rigid transformations (residue clouds) in the SE(3)N space. Briefly, 
for a sequence of length l, each residue is parameterized as the collec-
tion of the translation of its Cα atom, denoted as xi ∈ ℝ3, and its orienta-
tion, uniquely defined by the coordinates of three backbone atoms  
(C, Cα, N) and denoted as ri ∈ SO(3). Collectively, we denote the whole 
sequence as ℛ = {(xi, ri)} ∈ SE(3)

l.
A distinctive step we took as compared with previous works13–17 is 

the introduction of a protein-level latent variable z ∈ ℝCz  with the 
fixed-size dimensionality of Cz = 32, which encodes the essential  
information about the global geometry of the underlying structure. 
Unlike the length-dependent representation of protein structures 
adopted in previous works, the fixed-dimensional representation is 
independent of protein size and, thus, allows the mapping of all the 
protein structures into a uniform latent space. The continuous nature 
of this latent space further supports the diffusion-based latent sam-
pling among different protein topologies. In particular, in this work, 
we intentionally restrict this latent space to a low dimensionality, 
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aiming to identify the principal degrees of freedom for the description 
of protein global geometry. By this means, the latent-level manipula-
tions only impose coarse controls over the protein global geometry 
without enforcing strong restrictions on the atomic-level local 
structures.

We further model the joint distribution p (ℛ, z) in a hierarchical 
fashion. With this formulation, we essentially decompose the genera-
tion process into two steps, namely, the acquisition of z and the sub-
sequent structure-space generation process conditioned on it:

p (ℛ, z) = p (z)p (ℛ|z) . (1)

The conditional generation in the structure space is further  
modelled as a diffusion-based process, through which our model is 
trained to learn the complex data distribution (Supplementary Fig. 1 
shows the model architecture). In brief, we define the forward process 
of the diffusion model as a non-learnable Markovian process that 
gradually introduces noises to a protein structure ℛ0 towards a prede-
fined prior distribution pT within T steps:

q (ℛ1∶T|ℛ0) =
T

∏
t=1

q (ℛt|ℛt−1) , (2)

whereas the reverse process is also a Markovian process that learns to 
remove the noise signal conditioned on the latent variable z as

pθθθ (ℛ0∶T|z) = pT (ℛT)
T

∏
t=1

pθθθ (ℛt−1|ℛt, z) , (3)

where q and p are the probability distributions for the forward and 
reverse processes, respectively, with θ denoting the model parameters. 
The training objective is to make an accurate prediction ̂ℛθ  for the 
ground truth ℛ0, which is, for simplicity, denoted here as the recon-
struction loss ℒreconθθθ (ℛ0, ℛ̂θ(ℛt, t, z)).

Although the current protein structure classification 
systems19,20,32,63 partially align with our definition and expectation  
of z, several notable drawbacks preclude them as optimal representa-
tions. First, all classification systems implicitly assume protein folds as 
discrete islands in the structure space, but overlook the connections 
between these discrete collections64. To enforce this discreteness 
in annotation assignments, the systems must rely on subjective and 
arbitrary criteria, which often lead to inconsistencies between systems 
and frequently cause confusion and controversy24,34,64. Second, the 
explicit requirement of manual annotations negates the possibility of 
scaling up to the whole known structure space or repurposing to some 
smaller and specialized dataset, where the annotation is lacking and 
the learning of representations is still an intriguing question.

To tackle this challenge, we seek to learn a continuous represen-
tation of z directly from the training data. Indeed, alternative to a dis-
crete view, some past studies also suggested that the complete fold 
space—and consequently, the space of de novo designed proteins—
should be considered geometrically continuous23,65,66. In light of  
past attempts67–71, we incorporate an E(3)-equivariant structure 
encoder (with parameters ϕ) to infer z from the input ground-truth  
structure following the posterior distribution qϕϕϕ(z|ℛ0)  (Supplementary  
Methods 1.1 shows the discussion on the equivalence of E(3) and SE(3) 
equivariance in the reprensentation of natural proteins). We model 
p(z) with an isotropic Gaussian prior, and add a Kullback–Leibler diver-
gence loss term to encourage a continuous latent structure, effectively 
shaping our model into a VAE-like framework. Combined with the 
diffusion model, our final training objective is

argmin
ϕϕϕ,θθθ

𝔼𝔼ℛ0∼pdata(ℛ)𝔼𝔼z∼qϕϕϕ(z|ℛ0)𝔼𝔼t∼U{1,T}𝔼𝔼ℛt∼q(ℛt |ℛ0)

[ℒreconθθθ + βKL (qϕϕϕ(z|ℛ0) ∥ p(z))] .
(4)

With this training scheme, we concurrently trained an encoder to 
capture the essential information about the global geometry of a struc-
ture and a decoder to sample in the structure space by conditioning 
on it. The considerably low dimensionality of the latent and distribution 
regularization effect (by the Kullback–Leibler divergence loss) jointly 
force the encoder to capture several crucial degrees of freedom that 
account for the variation within the dataset, simplifying the latent 
distribution. By encoding all the training samples into the latent space, 
we further trained a latent diffusion model to capture this distribution 
and eventually achieve unconditional sampling of the structure space 
p (ℛ) through the unconditional sampling of p(z) and the conditional 
generation of p (ℛ|z) (equation (1)).

Despite the analogy to a class of latent diffusion models72–74 in the 
use of latent diffusion, our framework does not strictly follow their 
architecture. In Supplementary Methods 1.3, we provide a detailed 
discussion of the connections between our method and latent diffu-
sion models, along with additional domain-specific motivations and 
benefits.

Dataset and training summary
We prepared two datasets for the training of TopoDiff: the PDB mono-
mer set and the CATH-60 set. The PDB monomer set was directly 
collected from the PDB18, and the CATH-60 dataset was constructed 
based on the S60 non-redundant domain list from the CATH 4.3 
release20. For the training of the structure diffusion module, we used 
a strategy that considers both model performance and training effi-
ciency. Specifically, we first trained the structure diffusion module 
alone on the PDB monomer set to learn a good generative prior to the 
protein structure space, and in the later phase, concurrently trained 
this base model with a randomly initialized structure encoder in the 
aforementioned architecture. A detailed introduction of the dataset 
preparation process and the training timeline is provided in Supple-
mentary Methods 1.4 and 1.5, with the essential parameters listed in 
Supplementary Tables 1–3.

Visualizing structure representation of different databases
We collected domain-level classification datasets from three different 
sources: CATH19,20, SCOPe32 and ECOD33. The structure encoder was 
trained exclusively on the CATH dataset, with the preparation and 
processing details outlined in Supplementary Methods 1.4. The other 
two datasets, SCOPe and ECOD, were used solely during the inference 
stage, and we restricted the included structures to single-chain proteins 
with a maximum of 256 residues. Detailed information for each dataset, 
including the version, structure count and classification hierarchy, is 
provided in Supplementary Table 6.

To get the representation of each structure, we extracted the 
coordinates of Cα atoms and inferred through the trained encoder. For 
dimension reduction, we applied the t-SNE30 algorithm to compute the 
transformed 2D embeddings of the latent representations. Specifically, 
we used the implementation from openTSNE75, with the L2 distance 
metric and a perplexity of 50.

To visually assess the agreement of the learned latent space with 
human annotations, we coloured the t-SNE scatter plot according to dif-
ferent annotation hierarchies. For the top hierarchy of each database, 
we used a discrete colour map to differentiate categories with distinct 
colours. For the second hierarchy, such as the architecture level in the 
CATH database, we created subplots for each architecture category, 
colouring the samples according to the kernel density estimation76,77 
of that category on the 2D latent space, providing a clear visualization 
of each category’s distribution.

Definition of evaluation metrics for structure generation
To comprehensively benchmark the quality of structures generated 
by various diffusion models, we evaluated the samples with a series of 
metrics, each emphasizing a distinct aspect.
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Coverage. We adapt the coverage metric initially proposed in ref. 42 
to measure the extent to which a model can cover the natural protein 
space. Briefly, we first constructed a K-nearest neighbour (KNN) mani-
fold of all real samples (that is, natural proteins) and then measured 
the fraction of real samples whose neighbourhoods encompass at 
least one fake sample (that is, structures produced by the generative 
models). Formally, for N given samples, the coverage over the target 
sample distribution is defined as

NNDk (Xi) ∶ = D(Xi,XNN(Xi ,k))

B(x, r) ∶ = { y|D(x, y) < r}

Coverage ∶ = 1
N

N
∑
i=1
1∃j s.t Yj∈B(Xi ,NNDk(Xi))

, (5)

where {Xi} denotes the set of real samples, {Yi} denotes the set of all 
fake samples, NNDk(Xi) stands for the distance from Xi to its kth nearest 
neighbour in {Xi} excluding itself and B(x, r) refers to the hypersphere 
around x with a radius of r.

On the basis of this definition, we need to define a function D(⋅,⋅) 
to measure the distance between two arbitrary structures. Specifically, 
we need to compute at least the distance between Xi and the kth nearest 
neighbours in {Xj|j ≠ i} to construct the KNN manifold at the given point, 
and then use the distance between Xi and its first nearest neighbour  
in {Yi} to decide whether Xi is covered by an arbitrary fake sample. The 
final coverage metric is obtained by averaging the binary indicators 
over {Xi}. In this work, we computed the metric with two different dis-
tance definitions to demonstrate flexibility and robustness.

The first definition is the complement of the TM-score43,78 of the 
two compared structures. To make the function symmetric with respect 
to the order of inputs, we define it based on the average of the query 
TM-score and the target TM-score:

DTM = 1 −
TMquery(query, target) + TMtarget(query, target)

2 . (6)

This distance definition is a natural choice as the TM-score is 
designed to measure the global structural similarity and has been widely 
used for structure evaluation79. However, due to its use of dynamic 
programming and heuristic iterative algorithms to refine for optimal 
solutions, the computation of this metric is generally non-parallelizable 
and will be exceptionally slow when comparing a sampled structure to 
all natural structures. Therefore, we also provide a faster-speed alter-
native, taking the distance defined by a third-party structure searching 
model80, which uses supervised contrastive learning to learn an embed-
ding vector (emb) of each protein for structure comparison:

DProgres = 1 − emb
⊤
query ⋅ embtarget. (7)

In practice, the pairwise distance between the natural structures 
is precomputed with both approaches for reuse.

The choice of the hyperparameter k of KNN should be determined 
before the computation of the metric. Following the recommendation 
in the original study42, we chose k based on the principle that a sample 
size equivalent to the artificial samples from the very same distribution 
of real samples could achieve a coverage close enough to 1. To do this, 
we initially randomly sampled 500 natural chains as the pseudo-query 
set, used the remaining chains as samples from the target distribution 
and then computed the coverage of the pseudo-query set against the 
target distributions for different choices of k. On the basis of such a 
scheme, we ultimately used k = 100 for all experiments, although we 
found that different choices of k generally do not alter the relative 
rankings of the evaluated models (Supplementary Fig. 11).

When comparing the samples of a fixed length to the natural pro-
tein distribution, at each sampling length l, we considered all natural 

protein structures in the CATH-40 dataset20 lying within the interval 
of [l – 25, l + 25].

Diversity. To compute the diversity of N samples, we first used 
TM-align78 to compute the pairwise TM-scores. Then, we clustered 
the samples with a cut-off of 0.6. The proportion of the total clusters 
to the total number of samples N was reported as diversity: a higher 
score generally indicates that the generated samples are more diverse.

Designability. To assess the designability of a given sample, we first 
used ProteinMPNN81 to sample eight amino acid sequences with a tem-
perature of 0.1. Subsequently, the sequences were fed to ESMFold82 to 
infer the structures. The minimum RMSD of the inferred structures to 
the given sample was reported as scRMSD: a smaller value generally 
implies that the sample is more designable.

Novelty. To assess the novelty of a given sample, we began by using 
Foldseek83 to query the sample against the CATH-40 dataset20 with the 
parameter ‘-a 1 –exhaustive-search 1 -e inf -c 0.5 –alignment-type 1’. As 
Foldseek uses a slightly different implementation of TM-align78, we 
subsequently selected the top 25 matches from the query results with  
the highest TM-scores and recomputed the alignment with TM-align78. 
The highest TM-score to the chains in the dataset was reported as maxTM 
(length normalized by the sampled structures), representing the novelty 
of a sample: a higher score generally implies that the sample is less novel.

In the experimental validation section, to assess novelty against 
the full PDB scope, we used Foldseek83 to query the entire PDB (data up 
to February 2023) with the parameters ‘-a 1 –exhaustive-search 0 -e inf -c 
0.5 –alignment-type 1’ (with exhaustive pairwise search disabled). The 
top 25 matches were then realigned using TM-align, and the highest 
query TM-score was reported.

Benchmark on unconditional sampling
All benchmark experiments were conducted with TopoDiff model v. 
1.1.2 (Supplementary Table 1). For each model evaluated in the bench-
mark testing, we randomly sampled 500 structures at each length of 
{50, 75, 100, 125, 150, 175, 200, 225, 250}. We first computed metrics 
based on all 500 samples at each length to get a series of values reflect-
ing the length-dependent performance for each model. Since some 
sampled structures tended to exhibit considerably low designability as 
well as high novelty and diversity due to structural defects, leading to 
an overestimation of these metrics, we also implemented an additional 
step to filter the samples by only preserving those with scRMSD ≤ 2 Å 
and recomputed the metrics at each length. Finally, for each metric, we 
averaged out along all the sampled lengths to present an indication of 
its overall performance. We used the length-averaged metrics to draw 
the radar plot (Fig. 3c).

Co-visualization of latent space and generated structures
To project the latent codes of sampled structures onto the t-SNE 
dimension-reduced manifold, we used the transform method imple-
mented in openTSNE75 to embed the newly sampled latents into the 
same space that we used for the CATH dataset visualization. Briefly, 
following the same basic principles as conventional t-SNE, the positions 
of the background embeddings were kept fixed, and each sampled 
latent was optimized independently with respect to them. We only 
selected the latent codes associated with the fairly designable and 
novel samples (that is, scRMSD ≤ 2 Å and CATH-maxTM < 0.7). Finally, 
we also co-visualized some sampled structures spanning the entire 
latent manifold, providing a visual context on the sampled structures 
and their spatial relationships with respect to the latent codes.

Tuning model preference by latent-space rejection sampling
To tune the sampled latent distribution, we began by training latent 
classifiers that predict the structural properties of the given latent 
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codes (Supplementary Methods 1.6). We further used these latent 
classifiers to conduct rejection sampling over the sampled latents, 
obtaining variants of the model with distinct sampling preferences. 
Recall that pθ(z) is the base distribution; we unconditionally sample  
from the latent diffusion module. Our goal is to reweight the sam-
pled latent distribution using a set of trained classifier functions  
f1(z),…,fn(z) and corresponding thresholds c1,…,cn based on an accep-
tance probability function α(z), such that the resulting latent distribu-
tion paccept(z) (and eventually the sampled structure distri bution) would 
be shifted towards our intended preference.

Specifically, for each variant, we first defined a series of length- 
dependent thresholds in terms of the designability (scRMSD) and 
novelty (maxTM) of the sampled structures. For simplicity, we only con-
sidered three possible variants: designability-prior (sampling highly 
designable structures with the designability classifier), novelty-prior 
(sampling highly novel structures with the novelty classifier) and 
all-round (sampling structures with fairly high desig nability and  
novelty when collectively using both classifiers). The exact thresholds 
we used at various sample lengths are summarized in Supplementary 
Table 4.

Intuitively, we want to sample the latent codes with a higher prob-
ability when they match the expectation, and lower if not. To achieve 
this aim, we define an acceptance probability function α(z), requir-
ing that z is accepted with the probability of 1 only if approved by all  
classifiers and with the probability of 0.1 if denied by any classifier:

α(z) = {
1, if fi(z) ≤ ci for all i = 1…n,

0.1, if fi(z) > ci for any i = 1…n.
(8)

The resulting probability density function after applying the rejec-
tion sampling procedure is

paccept,θ(z) =
pθ(z) ⋅ α(z)
Zaccept

, (9)

where pθ(z) is the original latent distribution sampled from the latent 
diffusion module,

α(z) is the combined acceptance probability as defined above  
and Zaccept is the normalization constant, ensuring that paccept,θ(z) inte-
grates to 1.

This formulation ensures that the resulting distribution  
paccept,θ(z) reflects the collective influence of all the classifiers. By 
training all modules once and setting different combinations of  
these thresholds, we shifted the sampled distribution to match our 
expectations as closely as possible.

For each variant, we sampled 500 structures per sample length 
using the given latent sampling strategy, and computed all metrics 
following the definition introduced in the benchmark section.

Sampling of structures with similar global geometry
To sample structures sharing similar global geometry with respect to  
a reference structure, we encoded the query structures in our CATH 
training set using the trained encoder, and randomly resampled 
five structures with each inferred latent code. We selected refer-
ence structures with a wide variety of their SSE compositions and 
spatial arrangements, and listed their original structures and the five 
non-cherry-picked samples side by side.

Sampling of structures with latent code interpolation
For the interpolation experiment, we first randomly chose a number 
of candidate pairs of samples from the CATH training set. For each 
candidate pair, we conducted a linear interpolation to get ten latent 
codes evenly located between the two termini. Finally, we randomly 
selected a chain length between 75 and 150 residues, and sampled a 
structure with each latent code.

For structure sampling, we implemented with a setting that mini-
mizes the stochasticity introduced into the reverse sampling process 
(Supplementary Table 5). Specifically, in the ℝ3 space, we used the 
denoising diffusion implicit models84 formulation instead of the default 
denoising diffusion probabilistic models13, where the reverse sampling  
process is reformulated in a noise-free way that ℛt−1  is deterministically  
derived given ℛt, ℛ̂θ  and the noise schedule. Similarly, in the SO(3) space,  
we used a score scale of 1 or 2 and a noise scale of 0, such that the reverse 
sampling process would also introduce no additional stochasticity.  
By using this reverse sampling setting, we ensured that the generated 
structures are solely determined by the initial state of noise sampled 
from the SE(3)l space and the conditioned latent code. For the structure 
generation of each series of interpolated latent codes, we further  
fixed the random seed used for the initial-state sampling, so that the 
only difference between the generation of each structure is the latent 
code itself. By this means, we could ensure that the generated structures 
are more consistent with the latent code they are conditioned on  
and reduce unwanted variability caused by sampling stochasticity.

Sampling of structures with motif scaffolding
For the motif scaffolding experiment, we selected three representa-
tive motifs from the RFDiffusion work17, whose original structures 
adopt distinct secondary structures (mainly alpha, mixed of alpha and 
beta, and mainly beta). We largely followed the experimental setting 
introduced in the original study17. Specifically, each design case was 
first associated with a detailed setting on the motif information and 
constraints, such as the total length of designs, motif definition and 
sequential position of motif on designs. Subsequently, we randomly 
sampled 5,000 valid combinations of constraints and latent codes, and 
used these combinations for structure sampling. For each generated 
structure, we designed eight sequences with ProteinMPNN81 and folded 
them with ESMFold82. The designs were marked successful if global 
scRMSD ≤ 2 Å and motif scRMSD ≤ 1 Å. We kept these settings as close as 
possible with respect to the original study17, except for two differences. 
First, for the two-strand 4ZYP motif, since the originally designed 
length (~30–50) was too short to adopt most of the stable mainly beta 
topologies, we kept the motif fixed and increased the sample length to 
~90–110. Second, during sequence design, we did not freeze the motif 
sequence as our structure diffusion module was not specifically trained 
to be aware of the motif sequence information. The final motif design 
constraints are summarized in Supplementary Table 7.

For each motif, we gathered all the successful designs and projected 
the corresponding latent codes onto the t-SNE dimension-reduced plot. 
The scatter plot is visualized as a heat map, with each point coloured 
according to the kernel density estimation76,77 of the successful designs 
on the t-SNE space. We also co-visualized the generated structures from 
each region of the manifold to demonstrate the diversity and control-
lability of the global geometry. In the structural presentation, the motif 
part is coloured in yellow and the rest, in sky blue.

In silico design of novel mainly beta proteins
Due to the asynchronous development of the model, all the experiment 
validations in this section were conducted using TopoDiff model v. 1.1.1 
(Supplementary Table 1). All the supplementary modules (for example, 
latent diffusion module, latent classifiers and so on) used in this experi-
ment were also trained based on this version. Briefly, we first sampled 
a number of protein backbones using the aforementioned rejection 
sampling strategy to focus the sampling on mainly beta proteins with 
good novelty and designability. We then adopted a three-stage filtering 
pipeline to generate the sequence designs and screen for designs with 
exceptionally good in silico quality.

Specifically, we began by generating novel protein backbones 
through four rounds of sampling. For each round of sampling, we first 
sampled 17,500 backbones (2,500 samples from each of the seven 
protein lengths between 50 and 200 residues), and applied a stringent 
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filtering criterion to identify some of the most promising mainly beta 
designs in terms of novelty and designability. In the first round of sam-
pling, we conducted a completely unconditional sampling, resulting 
in 33 backbones with 70 sequence designs. In the three subsequent 
rounds, we gradually incorporated latent classifiers to reweight the 
sampled latent distribution based on the predicted beta ratio, nov-
elty and designability. This approach effectively enforced in silico  
enrichment towards latent codes that were likely to decode into 
novel, designable mainly beta proteins, yielding a fourfold increase in  
successful designs when using all three classifiers.

Finally, out of the 403 resulting backbone with 950 sequence 
designs, we selected 21 designs ranging from 50 residues to 200 resi-
dues for experimental validation. The structure sampling and the in 
silico selection processes are schematically summarized in Supplemen-
tary Fig. 2 and are elaborated in detail in Supplementary Methods 2.5.

Protein expression and purification
Genes encoding the selected designs were synthesized from GenScript, 
cloned onto the pET-29b(+) vector using GoldenGate assembly (NEB, 
R3733L and M0202T), verified with Sanger sequencing, and trans-
formed into the BL21 (DE3) E. coli strain (Tsingke, TSC-E06). Protein 
expression was induced in the Terrific Broth medium with 50 μg ml–1 
of kanamycin overnight at 37 °C. Protein expression was confirmed 
by western blotting against the N-terminal His tag (Proteintech, 
66005, SA00001-1). Bacterial cells were harvested by centrifugation, 
resuspended and homogenized in lysis buffer (50 mM of phosphate, 
300 mM of NaCl, 30 mM of imidazole, pH 8.0), and lysed by sonication. 
Lysates were cleared by centrifugation (4 °C, 12,000g, 60 min). The 
supernatants were loaded onto Ni-NTA columns (Solarbio, P2010) 
pre-equilibrated with a lysis buffer. The columns were washed with 
ten column volumes of lysis buffer, followed by ten column volumes 
of high-salt wash buffer (50 mM of phosphate, 1 M of NaCl, 30 mM of 
imidazole, pH 8.0), five column volumes of high-imidazole wash buffer 
(50 mM of phosphate, 300 mM of NaCl, 50 mM of imidazole, pH 8.0) 
and eluted in an elution buffer (50 mM of phosphate, 300 mM of NaCl, 
500 mM of imidazole, pH 8.0).

SEC
Eluted protein samples from Ni-NTA purification were concentrated 
using Amicon Ultra 3 kDa MWCO concentrators (Merck Millipore, 
UFC900308) to a final volume of 1.2 ml, and were further purified by 
SEC using a Superdex 75 increase 10/300 GL column (Cytiva, 29148721). 
Fractions were collected for further analysis, according to the  
light absorption at 280 nm and the results of sodium dodecyl sulfate–
polyacrylamide gel electrophoresis.

CD
CD spectra from 190 nm to 280 nm were recorded at 25 °C and 95 °C 
using a 1-mm-path-length cuvette using a Chirascan Plus CD spectrom-
eter (Applied Photophysics). The background spectra were acquired 
across the same spectral range and manually subtracted. The processed 
CD data (in millidegrees) were further normalized by the sample con-
centration and the sequence length to derive the mean residue elliptic-
ity. Temperature melts were conducted in 1 °C steps (heating rate of 
1 °C min–1) by measuring the signal of samples prepared at 0.2 mg ml–1 
in phosphate-buffered saline buffer (25 mM of phosphate, 150 mM of 
NaCl, pH 7.4) at a wavelength of 215 nm.

Crystallization and structure determination
Crystallization was screened at 16 °C by sitting-drop vapour diffusion 
using commercial kit sets. For the design B10, before screening, the 
protein was concentrated to 10.6 mg ml–1. Crystals of diffraction quality 
were obtained under two conditions: (1) 30% (w/v) of PEG-3350, 0.1 M 
of Tris-HCl, 0.2 M of NaCl, pH 8.5; (2) 30% (w/v) of PEG-400, 0.2 M 
of sodium citrate tribasic dihydrate, 0.1 M of Tris-HCl, pH 8.5. The 

collected crystals were then flash cooled in liquid nitrogen without 
cryoprotection. All data were collected on 02U1 at the Shanghai Syn-
chrotron Radiation Facility and processed with HKL200085. Phenix86 
was used for molecular-replacement structure determination and 
subsequent refinement, using AlphaFold211 prediction as the initial 
model. Manual rebuilding was performed in Coot87, and all the molecu-
lar graphics were generated with PyMOL88 and ChimeraX89.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The dataset used for model training, along with the trained model 
weights, benchmark data and protein designs selected for experi-
mental validation, is available via Zenodo at https://zenodo.org/
records/13879811 (ref. 90). The crystal structure models have been 
deposited in the Protein Data Bank (accession codes 9KGZ and 9KGY). 
Source data are provided with this paper.

Code availability
The TopoDiff model is implemented in PyTorch. Full scripts (including 
the training code) and guidance for utilizing the model are available via 
GitHub at https://github.com/meneshail/TopoDiff/tree/main (ref. 91). 
A reproducible code capsule of TopoDiff is available via CodeOcean at 
https://doi.org/10.24433/CO.8705528.v1 (ref. 92).
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Extended Data Fig. 1 | Persistent underrepresentation of mainly-beta 
proteins in de novo design. All de novo designed proteins deposited in PDB 
up to September 2024 were collected from the PDA database, and filtered to 
exclude small peptides (length ≤ 50) as well as designs originating from sequence 
mutations or redesigns of naturally occurring backbones (maximum TM-score 
to PDB ≥ 0.9). (a) Cumulative number of de novo protein design entries over 
the time. General proteins and mainly-beta proteins (with beta ratio ≥ 0.5) are 

colored in blue and purple, respectively. (b) Distribution of natural proteins 
of the CATH dataset (left) and de novo designed proteins (right) based on the 
proportion of beta sheets. (c) Scatter plot of all de novo designed proteins, where 
the horizontal axis represents novelty (maximum TM-score to PDB) and the 
vertical axis represents the proportion of beta sheets. Each protein is denoted as 
a point, colored based on protein length. Detailed discussion of these data could 
be found in Supplementary Results 6.3.
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