邮箱:haozhou0806@gmail.com
• 北京市科技新星 Beijing Nova Program, 2024
• 国际文本生成大会最佳短论文 Best Short Paper of INLG, 2022
• 国际机器翻译评测英德大语种第一 Ranked #1 on WMT EN-DE translation, 2021
• 计算机学会NLPCC青年新锐科学家 CCF NLPCC Distinguished Young Scientist, 2021
• 自然语言处理顶级会议ACL最佳论文 Best Paper Award of ACL, 2021 (1/3455)
• 中国人工智能学会优博 CAAI Doctoral Dissertation Award, 2019
2022 至今 清华智能产业研究院 副研究员
2017 – 2022 字节跳动人工智能实验室 研究科学家/副总监
2012-2017 南京大学大学计算机科学与技术系 博士
2008-2012 南京师范大学计算机科学与技术学院 本科
研究方向是面向复杂符号系统的生成式人工智能,主要的应用包括超大规模语言模型驱动的文本生成,并把相关技术从语言拓展到同为符号系统的分子生成,蛋白质设计,新材料发现等应用中。
(一)并行文本生成模型
[1] Diffusion Glancing Transformer for Parallel Sequence-to-Sequence Learning. Lihua Qian, Mingxuan Wang, Yang Liu, Hao Zhou. In NAACL, 2024. (通讯作者)
[2] Directed Acyclic Transformer for Non-Autoregressive Machine Translation. Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie Huang. In ICML, 2022. (共同通讯作者)
[3] On the Learning of Non-Autoregressive Transformers. Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie Huang. In ICML, 2022. (共同通讯作者)
[4] latent-GLAT: Glancing at Latent Variables for Parallel Text Generation.Yu Bao, Hao Zhou, Shujian Huang, Dongqi Wang, Lihua Qian, Xinyu Dai, Jiajun Chen, and Lei Li. In ACL, 2022.
[5] switch-GLAT: Multilingual Parallel Machine Translation via Code-switch Decoder. Zhenqiao Song, Hao Zhou, Lihua Qian, Jingjing Xu, Shanbo Cheng, Mingxuan Wang, and Lei Li. In ICLR, 2022. (通讯作者)
[6] Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision. Chenyang Huang, Hao Zhou, Osmar Zaiane, Lili Mou, and Lei Li. In AAAI, 2022. (通讯作者)
[7] Duplex Sequence-to-Sequence Learning for Reversible Machine Translation. Zaixiang Zheng, Hao Zhou, Shujian Huang, Jiajun Chen, Jingjing Xu, and Lei Li. In NeurIPS, 2021. (通讯作者)
[8] The Volctrans GLAT System: Non-autoregressive Translation Meets WMT21. Lihua Qian, Yi Zhou, Zaixiang Zheng, Yaoming Zhu, Zehui Lin, Jiangtao Feng, Shanbo Cheng, Lei Li, Mingxuan Wang, and Hao Zhou. In WMT, 2021. (英德大语种自动评估第一,通讯作者)
[9] Glancing Transformer for Non-Autoregressive Neural Machine Translation. Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li. In ACL, 2021. (共同通讯作者)
[10] Imitation Learning for Non-Autoregressive Neural Machine Translation, Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. In ACL, 2019.
(二)AI for Science
[1] Multi-Scale Protein Language Model for Unified Molecular Modeling. Kangjie Zheng, Siyu Long, Tianyu Lu, Xinyu Dai, Ming Zhang, Zaiqing Nie, Wei-Ying Ma, Hao Zhou. In ICML 2024. (通讯作者)
[2] MolCRAFT: Structure-Based Drug Design in Continuous Parameter Space. Yanru Qu, Keyue Qiu, Yuxuan Song, Jingjing Gong, Jiawei Han, Mingyue Zheng, Hao Zhou, Wei-Ying Ma. In ICML 2024. (通讯作者)
[3] Mol-AE: Auto-Encoder Based Molecular Representation Learning With 3D Cloze Test Objective. Junwei Yang, Kangjie Zheng, Siyu Long, Zaiqing Nie, Ming Zhang, Xinyu Dai, Wei-Ying Ma, Hao Zhou. In ICML 2024. (通讯作者)
[4] Unified Molecular Modeling via Modality Blending. Qiying Yu, Yudi Zhang, Yuyan Ni, Shikun Feng, Yanyan Lan, Hao Zhou, Jingjing Liu. In ICLR 2024. (通讯作者)
[5] Unified Generative Modeling of 3D Molecules with Bayesian Flow Networks. Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, Wei-Ying Ma. In ICLR 2024. (Oral, 通讯作者, AI4S所有投稿中评分最高)
[6] Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule Generation. Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, Wei-Ying Ma. In NeurIPS 2023. (通讯作者)
[7] Learning Harmonic Molecular Representations on Riemannian Manifold. Yiqun Wang, Yuning Shen, Shi Chen, Lihao Wang, Fei Ye, Hao Zhou. In ICLR 2023. (通讯作者)
[8] On Pre-training Language Model for Antibody. Danqing Wang, Fei Ye, Hao Zhou. In ICLR 2023. (通讯作者)
[9] Zero-Shot 3D Drug Design by Sketching and Generating. Siyu Long, Yi Zhou, Xinyu Dai, Hao Zhou. In NeurIPS 2022. (通讯作者)
[10] Regularized Molecular Conformation Fields. Lihao Wang, Yi Zhou, Yiqun Wang, Xiaoqing Zheng, Xuanjing Huang, Hao Zhou. In NeurIPS 2022. (通讯作者)