邮箱:tongwang@mail.tsinghua.edu.cn
2024年度中国生物信息学十大进展(2024)
首届全球AI药物研发大赛冠军(2023)
2010-2014 山东大学 学士
2014-2019 清华大学 博士
2019-2025 微软研究院 高级研究员
2025-至今 清华大学生命学院 助理教授
2025-至今 清华-北大生命科学联合中心、北京生物结构前沿研究中心 研究员
本实验室研究围绕“人工智能+生物分子结构”展开,利用深度学习对生物大分子和药物分子进行结构表征学习、性质和互作预测、动力学模拟和序列设计,以期揭示生命活动的动态机理和助力药物发现,具体研究方向:
1) AI驱动的生物分子动力学模拟算法设计和应用
2) 图神经网络、几何深度学习和机器学习力场的算法开发
3) AI辅助药物发现和分子性质预测
1. Wang,
T.#*; He, X.#; Li, M.#; Li, Y.#; Bi, R.; Wang, Y.; Cheng, C.; Shen, X.;
Meng, J.; Zhang, H.; Liu, H.; Wang, Z.; Li, S.; Shao, B.*; Liu, T. “Ab initio
characterization of protein molecular dynamics with AI2BMD”. Nature, 2024, 635, 1019-1027.
2. Wang,
Y.#; Wang, T.#*, Li, S.#; He, X.; Li, M.; Wang, Z.; Zheng, N.; Shao, B.;
Liu, T. “Enhancing geometric representations for molecules with equivariant
vector-scalar interactive message passing”. Nat Commun, 2024,
15 (1), 313. Editors’ Highlights.
3. Li,
Y.#; Wang, Y.#; Huang, L.*; Yang, H.; Wei, X.; Zhang, J.*; Wang, T.*;
Wang, Z.; Shao, B.; Liu, T. “Long-short-range message-passing: A
physics-informed framework to capture non-local interaction for scalable
molecular dynamics simulation”. Proc Int Conf Learn Represent (ICLR),
2024.
4. Wang,
T.#*; He, X.#; Li, M.#; Shao, B.*; Liu, T. “AIMD-Chig: Exploring the
conformational space of a 166-atom protein Chignolin with ab initio molecular
dynamics”. Sci Data, 2023, 10 (1), 549.
5. Wang,
Y.#; Li, S.#; Wang, T.*; Shao, B.; Zheng, N.; Liu. T. “Geometric
transformer with interatomic positional encoding”. Proc Adv Neural Inf Process
Syst (NeurIPS), 2023, 36, 55981-55994.
6. Wang,
Z.#; Wu, H.#; Sun, L.; He, X.; Liu, Z.; Shao, B.; Wang, T.*; Liu, T.
“Improving machine learning force fields for molecular dynamics simulations
with fine-grained force metrics”. J Chem Phys, 2023, 159(3). Cover
story.
7. Li,
Z.#; Zhu, S.#; Shao, B.*; Zeng, X.*; Wang, T.*; Liu, T. “DSN-DDI: an
accurate and generalized framework for drug–drug interaction prediction by
dual-view representation learning”. Brief Bioinform, 2023, 24
(1), bbac597.
8. Lan,
J.#; He, X.#; Ren, Y.#; Wang, Z.#; Zhou, H.; Fan, S.; Zhu, C.; Liu, D.; Shao,
B.; Liu, T.; Wang, Q.; Zhang, L.*; Ge, J.*; Wang, T.*; Wang, X.*.
“Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction”. Cell
Res, 2022, 32, 593-595.
9. Zhang,
S.#; Liang, Q.#; He, X.; Zhao, C.; Ren, W.; Yang, Z.; Wang, Z.; Ding, Q.; Deng,
H.; Wang, T.*; Zhang, L.*; Wang, X.*. “Loss of Spike N370 glycosylation
as an important evolutionary event for the enhanced infectivity of SARS-CoV-2”. Cell Res, 2022, 32, 315-318.
10. Gong,
S.#; He, X.#; Meng, Q.; Ma, Z.; Shao, B.*; Wang, T.*; Liu, T.
“Stochastic Lag Time Parameterization for Markov State Models of Protein
Dynamics” J Phys Chem B, 2022, 126 (46), 9465-9475. Cover
story.
11. Liu,
S.#; Wang, Y.#; Deng, Y.; He, L.; Shao, B.; Yin, J.; Zheng, N.; Liu, T.; Wang,
T*. “Improved drug–target interaction prediction with intermolecular graph
transformer”. Brief Bioinform, 2022, 23 (5), bbac162.
12. Li,
Y.#; Wang, T.#*; Zhang, J.#; Shao, B.; Gong, H.*; Liu, T. “Exploring the
Regulatory Function of the N‐terminal Domain of SARS‐CoV‐2 Spike Protein
through Molecular Dynamics Simulation”. Adv Theor Simul, 2021, 4
(10), 2100152. Cover story & “Top Downloaded Article” Award.
13. Wang,
T.; Qiao, Y.; Ding, W.; Mao, W.; Zhou, Y.*; Gong, H.*. “Improved fragment
sampling for ab initio protein structure prediction using deep neural
networks”. Nat Mach Intell, 2019, 1 (8), 347-355. Highlighted:
Nat Mach Intell, 2019, 1 (8), 336-337.